Stereoselective Synthesis of (Z)-2-Acylamido-4-phenylcrotonates

Yi Nong XIE, Fan Min FU, Ai Qiao MI, Yao Zhong JIANG*
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041

Abstract: Two practical methods for highly stereoselective synthesis of (Z)-2-acylamido-4-phenylcrotonates 2a~b have been developed. The key step in the first route was how to control the acid-catalyzed isomerization of condensation mixtures of α-keto ester 5 with carbomite. In the second route the key step was reduction of oxime $\mathbf{8}$, derived from α-keto ester $\mathbf{5}$, with iron powder in the presence of acetic anhydride.

Keywords: (Z) $-\alpha, \beta$-Dehydroamino acids, stereoselective synthesis, $E \rightarrow Z$ isomerization, $\mathrm{Fe} / \mathrm{Ac}_{2} \mathrm{O}$ reduction of oxime.

Stereospecific synthesis of (Z) - α, β-dehydroamino acids is of great importance in the preparation of uncommon or natural optically pure amino acids, because, in general, (Z)-isomers afford much higher enantioselectivities with faster rates than (E)-isomers in the catalytic asymmetric hydrogenation ${ }^{1}$. (Z)-isomers of ethyl 2-acylamido-4-phenyl crotonate 2 are important precursors in the course of our synthesis of L-homophenyl alanine 1, a key synthon for most commercially important antihypertensive ACE inhibitors such as Enalapril, Benazepril, Lisinopril. Herein we reported two highly stereoselective approaches to (Z)-2-acylamido-4-phenylcrotonate 2a~b.

2a $\mathrm{R}=\mathrm{CH}_{3}$
2b $\mathrm{R}=\mathrm{Ph}$
In the presence of p-toluenesulfonic acid, the condensation of 2-oxo-4-phenyl butanoate 5, derived from 2-phenylethyl alcohol $3^{2,3}$, with acetamide gave a mixture of Z-olefin 2a, E-olefin 6a and tautomer β, γ-dehydroamino acid ester 7a (Scheme 1). It seems that the content of $\mathbf{2 a}$ increases as the ratio of acetamide to α-keto ester $\mathbf{5}$ decreases. When a ratio of 3:1 of acetamide to α-keto ester $\mathbf{5}$ was used, the desired 2a was obtained only in 26%, whereas a ratio of $1.5: 1$ led to 49% of 2a (Table 1, entries $1 \sim 3$). Under the same reaction condition, the condensation of α-keto ester 5 with benzamide gave the similar result, with 53% of (Z)-2b (Table 1, entry 4). It is extremely difficult to separate discrete isomers by column chromatography because of their similar polarities. In addition, the hydrogenation of tautomers 7a and 7b could only give D,

L-homophenylalanine. To avoid this drawback and based on the work of Cativlela C. ${ }^{4}$ that (E)-isomers of α, β-dehydroamino acid could be converted to the thermodynamically more stable (Z)-isomers by Lewis acid TiCl_{4}, we investigated several acid catalysts for the conversion of not only $(E)-\mathbf{6 a}, \mathbf{6 b}$ but also tautomers $\mathbf{7 a}, \mathbf{7 b}$ to $(Z)-\mathbf{2 a}, \mathbf{2 b}$.

Scheme 1

3
4
5

6a $\mathrm{R}=\mathrm{CH}_{3}$
6b R=Ph

7b R=Ph

First, we tested direct treatment of condensation mixtures with Lewis acids and HCl gas (Table 1). HCl gas gave better conversion than Lewis acid TiCl_{4} and AlCl_{3}. The best results were 65% of $\mathbf{2 a}$ and 88% of $\mathbf{2 b}$ when treated with HCl at $80^{\circ} \mathrm{C}$, and the isolated yields of $\mathbf{2 a}$ and $\mathbf{2 b}$ were 30% and 68%, respectively.

Table 1. Acid-catalyzed isomerization of condensation products

Entry	R	Condensation Product			Conversion Condition	Result				
		2	6	: 7		2	:	6	: 7	7
1	CH_{3}	49	23	28	$\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 24 h	60		9	3	
2	CH_{3}	49	23	28	$\mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 78 h	55		8	2	
3	CH_{3}	26	53	21	HCl (gas), $80^{\circ} \mathrm{C}, 7 \mathrm{~h}$	65		9	2	6
4	$\mathrm{C}_{6} \mathrm{H}_{5}$	53	30	17	HCl (gas), $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$	88		1	1	1

Under above acid-catalyzed condition, the yield of 2a was not satisfactory, and our further investigation of the conversion of discrete isomers 6a and 7a showed that the tautomer 7a could only be partially isomerized to (Z) - $\mathbf{2 a}$ under various catalytic conditions (Table 2). This observation led us to seek alternative stereoselective method to $(Z)-\mathbf{2 a}$.

Table 2. Acid-, base-catalyzed isomerization of discrete isomers $\mathbf{6 a}$ and 7a

Entry	R	Substrate	Conversion Condition			Result	
				$\mathbf{2}: \mathbf{6}: \mathbf{7}$			
1	CH_{3}	$\mathbf{6 a}$	$\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 73 h	unchanged			
2	CH_{3}	$\mathbf{7 a}$	$\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t. 160 h	3			
3	CH_{3}	$\mathbf{6 a}$	piper., diox., $60^{\circ} \mathrm{C}$ or r.t., 6 h	49	2	49	
4	CH_{3}	$\mathbf{7 a}$	piper., diox., $60^{\circ} \mathrm{C}$ or r.t., 6 h	49	2	49	

In 1998 Burk ${ }^{5}$ and Zhang 6, separately, reported two similar methods for the preparation of enamides via reduction of oximes with iron powder in the presence of acetic anhydride. We now extended this method to accommodate α, β - dehydroamino acid derivatives and actually got a satisfactory result. (Z)-2a was obtained in $>92 \%$ stereoselectivity, with merely 7% of (E) - $\mathbf{6 a}$ and trace tautomer $\mathbf{7 a}(<1 \%)$. Only single recrystallization, instead of previous tedious column chromatography, gave (Z)-2a in 65% yield. Presently we are extending this process to the syntheses of other α, β-dehydroamino acid derivatives, including those bearing different N-acyl groups, in order to establish the generality of this potentially useful method.

In conclusion, highly stereoselective synthesis of (Z)-2-acylamido-4-phenyl crotonates has been achieved: acid-catalyzed isomerization of condensation mixtures for (Z)-ethyl 2-benzamido-4-phenylcrotonate $\mathbf{2 b}$, and reduction of oxime, derived from α-keto ester 5, with iron powder in the presence of acetic anhydride for (Z)-ethyl 2-acetamido-4-phenylcrotonare 2a.

All of the new compounds were identified by IR, MS, ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$ or 400 MHz , in CDCl_{3}) and elemental analysis ${ }^{7}$.

Acknowledgment

This project was supported by the National Natural Science Foundation of China. No. 29790124

References and notes

1. B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman, D. J. Weinkauff, J. Am. Chem. Soc., 1977, 99, 5946.
2. D. G. Mellio, R. D. Larsen, D. J. Mathre, W. F. Shukis, A.W. Wood, J. R. Colleluori, J. Org. Chem., 1987, 52, 5143.
3. G. A. Olah, R. D. Porter, J. Am. Chem. Soc., 1971, 93, 6877.
4. C. Cativlela, M. D. Villegas, Tetrahedron, 1993, 49, 497.
5. M. J. Burk, G. Casy, N. B. Johsons, J. Org. Chem., 1998, 63, 6084.
6. G. Zhu, A. L. Casalnuovo, X. M. Zhang, J. Org. Chem., 1998, 63, 8100.
7. The spectral analytical and physical data of new compounds.

Compd	$m p^{\circ} \mathrm{C}$	IR cm ${ }^{-1}$	MS	1H NMR	Elemental Analysis
2 a	86-87	1728, 1659	$\mathrm{M}^{+}+1: 248$	$\delta 1.27\left(\mathrm{t}, 3 \mathrm{H}, J=7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.50(\mathrm{~d}$, $J=7.0,2 \mathrm{H}, \mathrm{H}-4), 4.29(\mathrm{q}, 2 \mathrm{H}, J=$ 7.2, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $6.83(\mathrm{t}, 1 \mathrm{H}, J=$ $7.0, \mathrm{H}-3$), 7.06 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.19-7.30 (m, 5H, Ph)	Anal. Calcd: C, 68.00; H, 6.91; N, 5.66 Found: C, 67.55; H, 6.86; N, 5.53

6	oil.	1724, 1669	$\mathrm{M}^{+}+1: 248$	$\begin{aligned} & \delta 1.27\left(\mathrm{t}, 3 \mathrm{H}, J=7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), \\ & 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.93(\mathrm{~d}, 2 \mathrm{H}, \\ & J=7.0, \mathrm{H}-4), 4.33(\mathrm{q}, 2 \mathrm{H}, J=7.1, \\ & \left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.35-7.18(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}, \\ & \mathrm{H}-3), 7.44(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$	
7 a	82-84	1750,1644	$\mathrm{M}^{+}+1: 248$	$\delta 1.29\left(\mathrm{t}, 3 \mathrm{H}, J=7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.28-4.18(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.0$, $\mathrm{H}-2), 6.18$ (dd, 1H, $J=15.6, J=6.4$, $\mathrm{H}-3), 6.32(\mathrm{~d}, 1 \mathrm{H}, J=7.2, \mathrm{NH}), 6.63$ (d, $1 \mathrm{H}, \quad J=16.0, \mathrm{H}-4$), 7.36-7.23 (m, 5H, Ph)	Anal. Calcd: C, 68.00; H, 6.91; N,5.66 Found: C, 68.46; H, 6.78; N, 5.61
2b	97-98	1724, 1643	91(100)	$\delta 1.29\left(\mathrm{t}, 3 \mathrm{H}, \quad J=7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 3.59 (d, 2H, J=7.2, H-4), 4.24 (q, $\left.2 \mathrm{H}, J=7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.92(\mathrm{t}, 1 \mathrm{H}$, $J=7.2, ~ H-3), 7.73-7.21(\mathrm{~m}, 5 \mathrm{H}$, 4-Ph), 7.75-7.57 (m, 3H, PhCO), 7.71 (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.86(\mathrm{~m}, 2 \mathrm{H}$, PhCO)	Anal.Cacld: C, 73.77; H, 6.19; N, 4.53 Found: C, 74.01; H, 6.22; N, 4.62
6b	oil	1729, 1667	$\mathrm{M}^{+}: 309$	$\delta 1.39\left(\mathrm{t}, 3 \mathrm{H}, J=7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 4.02 (d, 2H, J=8.0, H-4), 4.39 (q, $2 \mathrm{H}, J=7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 7.32-7.20 (m, 4H, PhCO, H-3), 7.59-7.43 (m, $5 \mathrm{H}, ~ 4-\mathrm{Ph}), \quad 7.82-7.79(\mathrm{~m}, ~ 2 \mathrm{H}$, PhCO), 8.29 (br s, 1H, NH)	
7b	$\begin{gathered} 105-1 \\ 07 \end{gathered}$	$\begin{gathered} 1742,1656 \\ 1639 \end{gathered}$	$\mathrm{M}^{+}: 309$	$\delta 1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.47(\mathrm{t}$, $1 \mathrm{H}, J=6.4, \mathrm{H}-2), 6.29(\mathrm{dd}, 1 \mathrm{H}$, $J=16.0, J=6.0, \mathrm{H}-3), 6.72$ (d, 1 H , $J=16.0, \mathrm{H}-4), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=6.8$, NH), 7.55-7.25 (m, 8H, PhCO, 4-Ph), 7.86 (d, 2H, Ph CO)	Anal. Calcd: C, 73.77; H, 6.19; N, 4.53 Found: C, 73.50; H, 6.30; N, 4.93
8	90-92	3244, 1726	$\mathrm{M}^{+}: 221$	$\begin{aligned} & \delta 1.33\left(\mathrm{t}, 3 \mathrm{H}, \quad J=7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), \\ & 2.87-2.85\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad \mathrm{Ph} \underset{\mathrm{CH}_{2}}{\mathrm{CH}_{2}}\right), \\ & 2.96-2.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2},\right. \\ & 4.28\left(\mathrm{q}, 2 \mathrm{H}, J=7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), \\ & 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) \end{aligned}$	Anal. Calcd: C, 65.14; H, 6.83; N, 6.33 Found: C, 65.12; H, 6.89; N, 6.25

Received 2 January 2000

